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When a shock wave is propagated in a medium with decreasing
density, the velocity of the wave front can increase [1]. Below, we
shall consider a similar problem for a plasma in a magnetic field.

It has been shown that a strong magnetohydrodynamic shock wave
can be accelerated when it moves in an ideal plasma with variable
density and variable magnetic-field strength, and the specific energy
of a small mass can become very great.

The shock wave is accelerated in proportion to the increase in the
Alfvén velocity in front of the wave, so that the Mach number for the
shock-wave front will remain constant.

This acceleration mechanism possibly plays a role in the genera-
tion of high-energy particles in the plasma around stars and in outer
space.

1. Statement of the problem, Plane and cylindrical waves are con-
sidered. In the initial state, the plasma density pg and magnetic-field
strength Hg in both cases are distributed as

Po (x) = Poor? Hy () = Hopz® (1.1)

where pgy, Hgo, q, and s are positive constants and x is the distance
from the coordinate origin (i.e., the radius in cylindrical coordinates).
The magnetic vector is perpendicular to the flow, and in the cylin-
drical case it is also parallel to the axis. The shock wave (plane or
cylindrical) moves toward the coordinate origin: from x = © tox =0
(figure), The figure also shows the instantaneous position of the front
R and the density jump behind the wave front. The jump at the wave
front is considered abrupt, i.e., the structure of the front is not con-
sidered.

The time reading is taken assuming that the wave front arrives at
point x =0 whent =0, Thus, 0 >t > == and ©>x =0,

The viscosity and thermal conductivity of the plasma are assumed
to be zero, its electrical conductivity is infinite, and diffusion pro-
cesses are negligible. In the unperturbed plasma, the magnetic pres-
sure is considered to be much greater than the gas kinetic pressure.
The shock wave is assumed to be strong.

2. Finding self-similar solutions, The formulated problem admits
self-similar solutions. The plasma motion behind the shock-wave front
in the one-dimensional nonstationary case is described by the follow-
ing system of equations [2]:
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where ¥ is the adiabatic exponent, v =1, 2, respectively, for the
plane and cylindrical cases, and the remaining symbols are conven-
tional.

To obtain a self-similar solution, we move from the independent
variables (x, t) to (€, t), where £ is a dimensionless variable:

B= s (— =g - (2.2)

Here, A and « are constants and R is the coordinate of the shock-
wave front,
In relation (2.2), £ varies within the limits
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The velocity of the shock-wave front
d
D= d_}t? = Al (— L. (2.3)

The unknown function u, p, p, and H of the independent variables
(x, 1) are found as products of the functions of t and the functions of
the self-similar variables &:

p(z,8) = p ()¢ (B);
H (z,t) = Hy (t) 1.(8) - (2.4)

u(z,8) = ug (1) (8);
p(zt) = p (1) n ()3

Following [1], functions of t are referred to as scales, and functions
of & are known as representatives.

1f we relate the constants to the scales, we can assume that the
representatives are dimensionless and satisfy at the wave front (i.e.,
at £ = 1) the conditions

oy=yp ) =a(l)=y)=1- (2.5)

The scales are easily found, using (2.2) and (2.3), from the known
values u = 0, pg, p =0, and Hy immediately ahead of the wave front
and the universal conditions at the front of a strong shock wave (the
constants A and o still remain undefined)
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If we substitute (2.4) and (2.6) into (2.1), we obtain a system of
equations in t and €. The condition of separation of variables allows

us to determine the index of self-similarity
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It is important to note that the index of self~similarity is a func-
tion only of s and q, in the combination

c=s8—1hg—1. 2.8)

The values s and q enter the obtained functions of t and R only in
this combination (below, it is assumed that o # 1). For example, the
front velocity
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1t follows from the latter expression that a wave moving toward
the coordinate origin R = 0 can be accelerated as well as retarded.



Unlimited wave acceleration occurs when
0 =5 — g0 (2.10)

The fact that the index of self-similarity o is a function of s and
q in the combination 0 =s =—q/2 allows us to give the condition of
acceleration or retardation a simple physical interpretation. The local
Alfvén velocity in an unperturbed plasma is determined by the same
parameter o:
Hy Hooz* He
v, (7) = Vit 2V apmald — V/Tpoox : (2.11)

From a comparison of (2.9) and (2.11) it follows that the Mach
number of the shock wave remains constant as it moves, i.e.,

M :m:*ﬁm: consb -« 2.12)

Thus, it turns out that for the case in question the acceleration or
retardation of the shock wave is determined only by the dependence of
the Alfvén velocity on the coordinate x in the unperturbed state. If
the Alfvén velocity increases toward the coordinate origin, the wave
is accelerated proportionally.

With acceleration, i.e., when o <0, the mass velocity of the
plasma increases without bound when R > 0, within the framework
of the assumptions that were made. Such accumulation of energy is
accompanied, however, by a decrease in mass to zero (in the plane
case, the specific mass per unit area), so that the total energy near
the coordinate origin nevertheless tends to zero.

If we use the found o value from (2.7), express the constant A in
terms of the conserved Mach number M in (2.12), and indicate dif-
ferentiation with respect to £ by a prime, we obtain the following
system of ordinary differential equations for the representatives, which
are functions of the self-similar variable &:
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This system of equations determines the motion behind the wave
front. We can integrate it numerically for specific v, 7, q, 5, and M
values, which, together with formulas (2.6), gives a complete solution.

The most interesting results are expressed by formulas (2.6); t can
be expressed by (2.2) in terms of R and by formula (2.7) for the index
of self-similarity. These formulas determine the conditions of wave
acceleration, i.e., the energy cumulation.

The index of self-similarity o can be obtained not only from the
condition of separation of variables, as was done above, but 2lso from
considerations of dimensionality. Under the conditions of the problem,
there are only two determining dimensional constants with independent
dimensionalities (oo and Hgg), a fact which makes it possible to de-
termine o, It is important to note that « is the same for the plane and
cylindrical cases, so that the dependence of wave-front velocity on
distance to the coordinate origin is the same, although the flow be-
hind the front differs (see Eq. (2.1)).

Conservation of the Mach number for the moving shock wave (see
(2.12)) occurs in both the plane and cylindrical cases. A similar con-
clusion about conservation of Mach number follows from [3], inwhich
a self-similar magnetohydrodynamic shock wave from a cylindrical
explosion was considered, Essentially different problems were solved
in [3] and in the present paper.
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